62 resultados para 110903 Central Nervous System

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Examines alterations in corticotropin-releasing factor concentration and nerve release during maturation and aging in the rat brain. Release of neuropeptide Y was also measured. These studies may provide information leading to the effective treatment of age-related disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main theme of this thesis is that there is a common structural basis for drugs acting on the central nervous system (CNS), and that this concept may be used to design new CNS-active drugs which have greater specificity and hence less side-effects. To develop these ideas, the biological basis of how drugs modify CMS neurotransmission is described, and illustrated using dopaminergic pathways. An account is then given of the use of physicochemical concepts in contemporary drug design. The complete conformational analysis of several antipsychotic drugs is used to illustrate some of these techniques in the development of a model for antipsychotic drug action. After reviewing current structure-activity studies in several classes of CNS drugs (antipsychotics, anti-depressants, stimulants, hal1ucinogens, anticonvulsants and analgesics), a hypothesis for a common structural basis of CNS drug action is proposed- This is based on a topographical comparison of the X-ray structures of eight representative CNS-active drugs, and consists of three parts: 1.there is a common structural basis for the activity of many different CNS-active drug classes; 2. an aromatic ring and a nitrogen atom are the primary binding groups whose topographical arrangement is fundamental to the activity of these drug classes; 3. the nature and placement of secondary binding determines different classes of CNS drug activity. A four-Point model for this common structural basis is then defined using 14- CNS-active drug structures that include the original eight used in proposing the hypothesis. The coordinates of this model are: R1 (0. 3.5, 0), R2 (0, -3.5, O), N (4.8. -0.3, 1.4), and R3 (6.3, 1.3, 0), where R1 and R2 represent the point locations of a hydrophobic interaction of the common aromatic ring with a receptor, and R3 locates the receptor point for a hydrogen bond involving the common nitrogen, N. Extended structures were used to define the receptor points R1, R2 and R3, and the complete conformational space of each of the 14 molecules was considered. It is then shoun that the model may be used to predict whether a given structure is likely to show CNS activity: a search over 1,000 entries in the current Merck Index shows a high probability (82%) of CNS activity in compounds fitting the structural model. Analysis of CNS neurotransmitters and neuropeptides shows that these fit the common model well. Based on the available evidence supporting chemical evolution, protein evolution, and the evolution of neurotransmitter functions, it is surmised that the aromatic ring/nitrogen atom pharmacophore proposed in the common model supports the idea of the evolution of CNS receptors and their neurotransmitters, possibly from an aromatic amine or acety1cho1ine acting as a primaeval communicating molecule. The third point in the hypothesis trilogy is then addressed. The extensive conformation-activity analyses that have resulted in well-defined models for five separate CNS drug classes are used to map out the locations of secondary binding groups relative to the common model for anti-psychotics, antidepressants, analgesics, anticholinergics, and anticonvulsants. With this information, and knowledge derived from receptor-binding data, it is postulated that drugs having specified activity could be designed. In order to generate novel structures having a high probability of CNS-activity, a process of drug design is described in which known CNS structures are superimposed topographically using the common model as a template. Atoms regarded as superfluous may be selectively deleted and the required secondary binding groups added in predicted locations to give novel structures. It is concluded that this process provides the basis for the rational design of new lead compounds which could further be optimized for potent and specific CNS activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis and neurodegenerative diseases in which cells of the central nervous system (CNS) are lost or damaged are rapidly increasing in frequency, and there is neither effective treatment nor cure to impede or arrest their destructive course. The Epstein-Barr virus is a human gamma-herpesvirus that infects more than 90% of the human population worldwide and persisting for the lifetime of the host. It is associated with numerous epithelial cancers, principally undifferentiated nasopharyngeal carcinoma and gastric carcinoma. Individuals with a history of symptomatic primary EBV infection, called infectious mononucleosis, carry a moderately higher risk of developing multiple sclerosis (MS). It is not known how EBV infection potentially promotes autoimmunity and central nervous system (CNS) tissue damage in MS. Recently it has been found that EBV isolates from different geographic regions have highly conserved BARF1 epitopes. BARF1 protein has the neuroprotective and mitogenic activity, thus may be useful to combat and overcome neurodegenerative disease. BARF1 protein therapy can potentially be used to enhance the neuroprotective activities by combinational treatment with anti-inflammatory antagonists and neuroprotectors in neural disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programmed cell death (PCD), is a highly regulated and sophisticated cellular mechanism that commits cell to isolated death fate. PCD has been implicated in the pathogenesis of numerous neurodegenerative disorders. Countless molecular events underlie this phenomenon, with each playing a crucial role in death commitment. A precedent event, apoptotic volume decrease (AVD), is ubiquitously observed in various forms of PCD induced by different cellular insults. Under physiological conditions, cells when subjected to osmotic fluctuations will undergo regulatory volume increase/decrease (RVI/RVD) to achieve homeostatic balance with neurons in the brain being additionally protected by the blood-brain-barrier. However, during AVD following apoptotic trigger, cell undergoes anistonic shrinkage that involves the loss of water and ions, particularly monovalent ions e.g. K+, Na+ and Cl-. It is worthwhile to concentrate on the molecular implications underlying the loss of these cellular components which posed to be significant and crucial in the successful propagation of the apoptotic signals. Microarray and real-time PCR analyses demonstrated several ion and water channel genes are regulated upon the onset of lactacystin (a proteosomal inhibitor)-mediated apoptosis. A time course study revealed that gene expressions of water and ion channels are being modulated just prior to apoptosis, some of which are aquaporin 4 and 9, potassium channels and chloride channels. In this review, we shall looked into the molecular protein machineries involved in the execution of AVD in the central nervous system (CNS), and focus on the significance of movements of each cellular component in affecting PCD commitment, thus provide some pharmacological advantages in the global apoptotic cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflammatory cytokine interleukin-1β (1 μg/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1β. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1β administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1β-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1β administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mud crab, Scylla olivacea, is one of the most economically valuable marine species in Southeast Asian countries. However, commercial cultivation is disadvantaged by reduced reproductive capacity in captivity. Therefore, an understanding of the general and detailed anatomy of central nervous system (CNS) is required before investigating the distribution and functions of neurotransmitters, neurohormones, and other biomolecules, involved with reproduction. We found that the anatomical structure of the brain is similar to other crabs. However, the ventral nerve cord (VNC) is unlike other caridian and dendrobrachiate decapods, as the subesophageal (SEG), thoracic and abdominal ganglia are fused, due to the reduction of abdominal segments and the tail. Neurons in clusters within the CNS varied in sizes, and we found that there were five distinct size classes (i.e., very small globuli, small, medium, large, and giant). Clusters in the brain and SEG contained mainly very small globuli and small-sized neurons, whereas, the VNC contained small-, medium-, large-, and giant-sized neurons. We postulate that the different sized neurons are involved in different functions. Microsc. Res. Tech. 77:189–200, 2014. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

COPPER IS INDISPENSABLE for development and function of the central nervous system (CNS). This is dramatically illustrated by the severe neuropathological deficits in Menkes disease, an X-linked copper deficiency disorder resulting from mutation of the gene that encodes an essential copper transporting P1B-type ATPase, ATP7A. Since its discovery over two decades ago, the role of ATP7A in copper transport and homeostasis has been inextricably linked to satisfying systemic and CNS requirements for copper. In a recent issue of American Journal of Physiology-Cell Physiology, Hodgkinson et al. (8) describe an important body of work, which for the first time distinguishes the CNS requirement for ATP7A from the CNS requirement for copper.